==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=21-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ANTIMICROBIAL PROTEIN 01-JUN-05 1ZUV . COMPND 2 MOLECULE: AMARANTHUS CAUDATUS ANTIMICROBIAL PEPTIDE 2; . SOURCE 2 SYNTHETIC: YES; . AUTHOR M.I.CHAVEZ,C.ANDREU,P.VIDAL,F.FREIRE,N.ABOITIZ,P.GROVES, . 30 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2393.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 13 43.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 5 16.7 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 1 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 6.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 13.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 1 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A V 0 0 152 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 -65.4 10.2 8.3 -0.4 2 2 A G + 0 0 47 18,-0.0 19,-0.5 19,-0.0 3,-0.1 0.320 360.0 132.2 -83.4 4.2 8.5 5.2 1.1 3 3 A E B S-A 20 0A 58 17,-0.2 17,-0.3 1,-0.2 5,-0.1 -0.189 76.8 -54.3 -55.1 150.3 5.6 4.9 -1.4 4 4 A a S > S- 0 0 7 15,-2.6 3,-0.6 3,-0.2 5,-0.2 0.051 82.6 -75.5 -39.0 127.6 4.8 1.5 -3.0 5 5 A V T 3 S- 0 0 101 3,-0.8 4,-0.1 1,-0.4 16,-0.0 0.156 98.1 -52.7 1.3 -85.4 8.1 0.1 -4.7 6 6 A R T 3 S- 0 0 172 3,-0.0 -1,-0.4 0, 0.0 -2,-0.1 -0.189 133.1 -12.1-131.0 30.0 7.7 2.6 -7.5 7 7 A G S < S+ 0 0 63 -3,-0.6 -2,-0.2 1,-0.4 2,-0.2 0.260 124.7 46.8 174.0 -15.9 4.0 1.3 -8.0 8 8 A R - 0 0 140 -5,-0.1 -3,-0.8 6,-0.0 -1,-0.4 -0.756 65.4-114.8-133.2 174.5 3.4 -2.0 -6.0 9 9 A b - 0 0 9 4,-0.2 6,-0.1 -5,-0.2 -3,-0.0 -0.654 48.9 -78.2 -97.5 166.8 3.7 -3.8 -2.6 10 10 A P > - 0 0 76 0, 0.0 3,-2.5 0, 0.0 2,-1.9 -0.300 68.5 -81.9 -50.7 149.6 5.7 -6.9 -1.7 11 11 A S T 3 S+ 0 0 113 1,-0.3 3,-0.1 -3,-0.1 -3,-0.0 -0.404 127.1 31.5 -68.3 80.1 3.9 -10.1 -2.8 12 12 A G T 3 S+ 0 0 56 -2,-1.9 -1,-0.3 1,-0.5 2,-0.2 0.169 103.1 84.9 150.2 -14.8 1.5 -10.3 0.1 13 13 A M < - 0 0 106 -3,-2.5 -1,-0.5 10,-0.1 2,-0.4 -0.523 68.3-122.0-106.3 174.9 0.9 -6.6 1.2 14 14 A c E -B 22 0B 26 8,-3.3 8,-1.8 -2,-0.2 2,-0.6 -0.965 12.6-131.4-126.3 130.4 -1.6 -4.0 -0.1 15 15 A a E -B 21 0B 56 -2,-0.4 6,-0.2 6,-0.2 -6,-0.1 -0.747 29.1-141.5 -84.0 114.8 -0.9 -0.5 -1.5 16 16 A S > - 0 0 7 4,-2.8 3,-2.2 -2,-0.6 11,-0.2 -0.237 25.9-106.2 -66.4 163.9 -3.1 2.2 0.2 17 17 A Q T 3 S+ 0 0 137 1,-0.3 -1,-0.1 9,-0.2 10,-0.1 0.539 121.2 68.6 -69.1 -5.4 -4.8 5.2 -1.5 18 18 A W T 3 S- 0 0 177 8,-0.3 -1,-0.3 2,-0.3 3,-0.1 0.485 118.4-115.3 -77.8 -8.9 -2.0 7.2 0.3 19 19 A G S < S+ 0 0 29 -3,-2.2 -15,-2.6 1,-0.3 2,-0.3 0.470 81.3 117.7 82.1 4.4 0.4 5.5 -2.2 20 20 A Y B -A 3 0A 92 -17,-0.3 -4,-2.8 -16,-0.0 -1,-0.3 -0.789 62.9-117.3-109.8 149.0 2.1 3.7 0.9 21 21 A b E +B 15 0B 38 -19,-0.5 2,-0.3 -2,-0.3 -6,-0.2 -0.506 51.9 99.8 -91.6 150.4 2.2 -0.1 1.5 22 22 A G E -B 14 0B 14 -8,-1.8 -8,-3.3 -2,-0.2 2,-0.3 -0.952 55.1 -82.9 173.6-156.7 0.8 -2.2 4.4 23 23 A K S S+ 0 0 126 -2,-0.3 3,-0.3 -10,-0.2 -10,-0.1 -0.944 71.2 41.4-139.6 161.3 -2.1 -4.5 5.5 24 24 A G S >>>S- 0 0 22 6,-0.3 4,-3.0 -2,-0.3 3,-2.6 -0.177 106.0 -43.1 84.2-180.0 -5.7 -4.1 6.9 25 25 A P T 345S+ 0 0 94 0, 0.0 -1,-0.2 0, 0.0 0, 0.0 0.511 132.4 61.2 -69.7 -1.6 -8.5 -1.7 5.8 26 26 A K T 345S+ 0 0 74 -3,-0.3 -8,-0.3 4,-0.1 -9,-0.2 0.491 126.8 15.5 -87.6 -6.0 -6.1 1.4 5.6 27 27 A Y T <45S+ 0 0 75 -3,-2.6 -3,-0.1 3,-0.2 -4,-0.1 0.623 137.9 31.8-138.1 -53.5 -4.2 -0.6 2.9 28 28 A c T <5S- 0 0 50 -4,-3.0 -13,-0.1 2,-0.4 -2,-0.1 0.441 97.2-121.8 -90.7 -9.3 -6.3 -3.6 1.6 29 29 A G < 0 0 63 -5,-0.7 -3,-0.0 1,-0.1 -6,-0.0 0.344 360.0 360.0 72.1 -3.4 -9.7 -1.8 2.1 30 30 A R 0 0 213 -6,-0.2 -2,-0.4 0, 0.0 -6,-0.3 -0.948 360.0 360.0-143.0 360.0 -10.5 -4.9 4.3