==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=21-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER HORMONE 17-JUN-96 1ZWB . COMPND 2 MOLECULE: PARATHYROID HORMONE; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR P.ROESCH,U.C.MARX . 36 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3449.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 21 58.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 5.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 5 13.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 14 38.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A V 0 0 174 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 135.4 17.6 -1.5 -4.5 2 2 A S + 0 0 82 1,-0.1 2,-1.0 0, 0.0 5,-0.1 0.094 360.0 100.0 86.3 -20.7 14.6 0.9 -4.9 3 3 A E + 0 0 100 4,-0.1 -1,-0.1 5,-0.1 5,-0.1 -0.307 56.5 161.7 -90.6 51.3 12.9 -0.3 -1.6 4 4 A I > - 0 0 112 -2,-1.0 4,-3.6 3,-0.1 5,-0.4 0.018 59.6 -80.0 -63.2 176.8 14.3 2.8 0.3 5 5 A Q H > S+ 0 0 180 1,-0.2 4,-1.9 2,-0.2 5,-0.1 0.916 135.0 40.4 -47.9 -51.4 12.9 4.0 3.7 6 6 A L H > S+ 0 0 130 2,-0.2 4,-0.9 1,-0.2 -1,-0.2 0.918 117.5 49.0 -67.0 -42.1 9.9 5.8 2.0 7 7 A M H >4 S+ 0 0 71 1,-0.2 3,-1.1 2,-0.2 6,-0.2 0.963 113.0 46.0 -62.5 -50.9 9.4 2.9 -0.5 8 8 A H H 3< S+ 0 0 97 -4,-3.6 -1,-0.2 1,-0.3 -2,-0.2 0.870 107.8 58.9 -60.1 -35.8 9.5 0.2 2.2 9 9 A N H >< S+ 0 0 123 -4,-1.9 3,-2.2 -5,-0.4 2,-0.5 0.759 79.0 106.1 -65.9 -23.3 7.1 2.4 4.3 10 10 A L G X< S- 0 0 67 -3,-1.1 3,-1.9 -4,-0.9 12,-0.1 -0.435 114.3 -20.8 -61.9 110.0 4.5 2.2 1.4 11 11 A G G 3 S- 0 0 27 -2,-0.5 -1,-0.3 1,-0.3 11,-0.2 0.813 109.6 -84.6 56.7 28.1 1.9 -0.3 2.8 12 12 A K G < S- 0 0 115 -3,-2.2 -1,-0.3 10,-0.1 -3,-0.2 0.596 78.0 -78.7 50.7 13.3 4.8 -1.4 5.2 13 13 A H < - 0 0 46 -3,-1.9 2,-0.1 -6,-0.2 -2,-0.1 0.650 68.5-173.8 63.6 123.6 5.9 -3.7 2.2 14 14 A L - 0 0 44 1,-0.1 -2,-0.0 5,-0.1 3,-0.0 -0.465 27.8-139.8-130.8-158.3 3.8 -6.9 1.9 15 15 A N - 0 0 111 -2,-0.1 -1,-0.1 0, 0.0 -2,-0.0 0.470 69.0 -45.9-138.8 -65.6 3.4 -10.3 -0.0 16 16 A S S > S+ 0 0 90 0, 0.0 4,-0.9 0, 0.0 -2,-0.0 0.294 130.2 24.9-143.5 -78.4 -0.2 -11.4 -1.0 17 17 A M H > S+ 0 0 162 2,-0.2 4,-0.6 1,-0.2 3,-0.1 0.850 134.3 42.0 -67.9 -26.8 -3.1 -11.1 1.7 18 18 A E H >> S+ 0 0 94 1,-0.2 3,-1.3 2,-0.2 4,-0.8 0.939 109.0 61.2 -76.8 -48.0 -1.0 -8.4 3.3 19 19 A R H 3> S+ 0 0 102 1,-0.3 4,-1.4 2,-0.2 -2,-0.2 0.617 93.9 63.8 -53.1 -17.2 -0.2 -7.0 -0.1 20 20 A V H 3X S+ 0 0 43 -4,-0.9 4,-2.5 2,-0.2 -1,-0.3 0.914 91.6 60.5 -78.5 -39.3 -3.8 -6.3 -0.7 21 21 A E H X S+ 0 0 49 -4,-2.2 4,-1.2 -5,-0.3 3,-0.6 0.925 107.2 44.8 -70.0 -40.4 -3.4 3.1 -2.6 27 27 A L H 3< S+ 0 0 87 -4,-1.3 6,-0.5 1,-0.2 4,-0.4 0.916 115.3 48.9 -67.3 -39.9 -7.0 3.5 -3.8 28 28 A Q T 3X S+ 0 0 45 -4,-1.9 4,-0.9 1,-0.2 -1,-0.2 0.521 103.5 62.1 -78.5 -1.6 -7.8 5.4 -0.5 29 29 A D T <4 S+ 0 0 95 -3,-0.6 -1,-0.2 -4,-0.3 -2,-0.2 0.835 90.1 67.5 -88.4 -34.3 -4.6 7.6 -1.1 30 30 A V T < S- 0 0 114 -4,-1.2 -2,-0.2 -3,-0.3 -1,-0.1 0.778 137.3 -16.8 -52.8 -32.0 -6.1 9.0 -4.3 31 31 A H T 4 S- 0 0 154 -4,-0.4 -1,-0.2 2,-0.0 -2,-0.2 0.092 100.6 -83.7-164.4 28.6 -8.8 10.8 -2.2 32 32 A N S < S+ 0 0 131 -4,-0.9 2,-1.4 1,-0.2 -3,-0.2 0.935 75.5 171.9 55.3 36.8 -8.9 9.2 1.3 33 33 A F - 0 0 126 -6,-0.5 -1,-0.2 -8,-0.1 -4,-0.2 -0.639 28.6-138.8 -84.9 82.8 -11.2 6.8 -0.8 34 34 A V - 0 0 109 -2,-1.4 -9,-0.1 -3,-0.2 2,-0.0 -0.160 25.5-175.0 -47.9 123.8 -11.8 3.9 1.7 35 35 A A 0 0 29 -11,-0.2 -11,-0.1 -14,-0.1 -1,-0.1 0.091 360.0 360.0 -99.6-147.5 -11.6 0.6 -0.1 36 36 A L 0 0 186 -2,-0.0 -12,-0.1 -15,-0.0 -1,-0.1 0.437 360.0 360.0-153.4 360.0 -12.3 -3.0 1.3