==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=31-JUL-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ANTIMICROBIAL PROTEIN 06-JUN-05 1ZWU . COMPND 2 MOLECULE: AMARANTHUS CAUDATUS ANTIMICROBIAL PEPTIDE 2 (ACMP . SOURCE 2 SYNTHETIC: YES; . AUTHOR M.I.CHAVEZ,C.ANDREU,P.VIDAL,F.FREIRE,N.ABOITIZ,P.GROVES,J.L. . 30 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2237.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 17 56.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 8 26.7 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 1 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 10.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 5 16.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 2 6.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A V 0 0 93 0, 0.0 2,-1.0 0, 0.0 21,-0.2 0.000 360.0 360.0 360.0 140.5 5.0 -2.7 2.8 2 2 A G E +A 21 0A 33 19,-2.2 19,-2.2 3,-0.0 2,-0.1 -0.869 360.0 31.0 73.7-102.5 5.0 0.1 5.3 3 3 A E E S-A 20 0A 77 -2,-1.0 2,-1.0 17,-0.3 17,-0.3 -0.382 94.3-116.2 -65.6 148.4 6.0 2.3 2.3 4 4 A a > - 0 0 7 15,-2.8 3,-2.6 12,-0.1 2,-0.4 -0.825 43.6-124.7 -75.5 101.4 4.7 1.6 -1.3 5 5 A V B > S-C 8 0B 77 3,-1.0 3,-2.6 -2,-1.0 15,-0.0 -0.363 82.6 -27.4 -64.4 105.6 8.4 1.0 -2.5 6 6 A R T 3 S- 0 0 165 -2,-0.4 -1,-0.3 1,-0.3 3,-0.1 0.790 128.8 -51.6 51.9 27.2 8.6 3.4 -5.5 7 7 A G T < S+ 0 0 41 -3,-2.6 -1,-0.3 1,-0.3 -2,-0.3 0.316 117.6 117.6 90.9 -4.5 4.8 2.8 -5.5 8 8 A R B < -C 5 0B 167 -3,-2.6 -3,-1.0 -4,-0.1 -1,-0.3 -0.441 46.2-156.2 -88.6 167.3 5.1 -1.0 -5.6 9 9 A b - 0 0 43 -5,-0.2 3,-0.2 4,-0.2 -5,-0.1 -0.940 20.1-109.9-134.2 154.9 3.9 -3.7 -3.1 10 10 A P S > S- 0 0 59 0, 0.0 3,-2.7 0, 0.0 12,-0.1 -0.226 75.9 -23.3 -76.4 176.7 5.0 -7.3 -2.3 11 11 A S T 3 S- 0 0 128 1,-0.3 0, 0.0 -2,-0.0 0, 0.0 0.147 129.2 -25.9 -29.7 93.5 3.0 -10.5 -3.1 12 12 A G T 3 S+ 0 0 57 1,-0.2 -1,-0.3 -3,-0.2 2,-0.1 0.448 100.3 134.7 77.1 3.6 -0.7 -9.5 -3.3 13 13 A M < - 0 0 75 -3,-2.7 2,-0.3 10,-0.1 -1,-0.2 -0.308 43.2-137.0 -77.0 169.2 -0.5 -6.3 -1.1 14 14 A c E -B 22 0A 28 8,-3.2 8,-2.5 -6,-0.1 2,-0.5 -0.870 8.7-118.3-132.6 157.9 -2.1 -3.0 -2.0 15 15 A a E -B 21 0A 42 -2,-0.3 6,-0.2 6,-0.2 -6,-0.1 -0.880 23.5-146.1-112.1 116.2 -1.1 0.8 -1.9 16 16 A S > - 0 0 6 4,-3.1 3,-1.9 -2,-0.5 11,-0.1 -0.231 32.9-101.8 -69.0 163.5 -3.1 3.4 0.2 17 17 A Q T 3 S+ 0 0 79 9,-0.4 -1,-0.1 1,-0.3 10,-0.1 0.638 120.9 63.7 -57.8 -18.2 -3.6 7.1 -0.7 18 18 A X T 3 S- 0 0 192 2,-0.2 -1,-0.3 -15,-0.0 3,-0.1 0.285 120.4-106.2 -90.4 4.9 -0.8 7.9 1.9 19 19 A G S < S+ 0 0 35 -3,-1.9 -15,-2.8 1,-0.3 2,-0.4 0.684 81.9 131.0 72.5 19.2 1.8 6.1 -0.2 20 20 A Y E -A 3 0A 132 -17,-0.3 -4,-3.1 -4,-0.1 2,-0.3 -0.905 47.1-145.5-111.5 135.6 1.8 3.2 2.4 21 21 A b E +AB 2 15A 2 -19,-2.2 -19,-2.2 -2,-0.4 2,-0.2 -0.818 39.9 106.3-109.7 137.6 1.4 -0.5 1.4 22 22 A G E - B 0 14A 7 -8,-2.5 -8,-3.2 -2,-0.3 2,-0.4 -0.865 62.9 -77.8-175.8-160.9 -0.4 -3.3 3.2 23 23 A K S S+ 0 0 139 -2,-0.2 3,-0.1 -10,-0.2 -10,-0.1 -0.996 76.5 63.3-133.2 126.3 -3.5 -5.5 3.1 24 24 A G S >>>S- 0 0 25 -2,-0.4 4,-2.9 1,-0.1 3,-1.6 -0.832 94.2 -50.1 146.9 178.1 -7.0 -4.2 4.2 25 25 A P H 3>5S+ 0 0 108 0, 0.0 4,-2.2 0, 0.0 -1,-0.1 0.875 130.6 45.4 -48.0 -53.9 -9.8 -1.7 3.4 26 26 A K H 345S+ 0 0 96 4,-0.2 -9,-0.4 1,-0.2 -3,-0.0 0.559 120.3 42.6 -71.7 -8.7 -7.5 1.5 3.3 27 27 A Y H <45S+ 0 0 80 -3,-1.6 -12,-0.2 -11,-0.1 -1,-0.2 0.846 127.1 25.0-100.2 -51.7 -4.9 -0.4 1.1 28 28 A c H <5S+ 0 0 64 -4,-2.9 -2,-0.2 -14,-0.2 2,-0.1 0.689 140.5 21.5 -95.7 -22.5 -7.1 -2.4 -1.4 29 29 A G << 0 0 39 -4,-2.2 -3,-0.1 -5,-0.6 -14,-0.0 0.131 360.0 360.0 -99.0-132.4 -10.0 0.0 -1.2 30 30 A R 0 0 141 -2,-0.1 -4,-0.2 -14,-0.1 -13,-0.2 0.357 360.0 360.0-145.5 360.0 -9.4 3.6 0.1